# ydata = b + w * xdata
b = -120 # initial b
w = -4 # initial w
lr = 0.000001 # learning rate
iteration = 100000
# store initial values for plotting
b_history = [b]
w_history = [w]
for i in range(iteration):
b_grad = 0.0
w_grad = 0.0
for n in range(len(x_data)):
w_grad = w_grad + 2.0*(y_data[n] - b - w*x_data[n])*(-x_data[n])
b_grad = b_grad + 2.0*(y_data[n] - b - w*x_data[n])*(-1.0)
# update parameters.
w = w - lr * w_grad
b = b - lr * b_grad
#store parameters for plotting
w_history.append(w)
b_history.append(b)
plt.contourf(x,y,Z, 50, alpha=0.5, cmap=plt.get_cmap('jet'))
plt.plot([-188.4], [2.67], 'x', ms=12, markeredgewidth=3, color='orange')
plt.plot(b_history, w_history, 'o-', ms=3, lw=1.5, color='black')
plt.xlim(-200,-100)
plt.ylim(-5,5)
plt.xlabel(r'$b$', fontsize=16)
plt.ylabel(r'$w$', fontsize=16)
plt.show()